39 research outputs found

    Optimized Entanglement Purification

    Get PDF
    We investigate novel protocols for entanglement purification of qubit Bell pairs. Employing genetic algorithms for the design of the purification circuit, we obtain shorter circuits achieving higher success rates and better final fidelities than what is currently available in the literature. We provide a software tool for analytical and numerical study of the generated purification circuits, under customizable error models. These new purification protocols pave the way to practical implementations of modular quantum computers and quantum repeaters. Our approach is particularly attentive to the effects of finite resources and imperfect local operations - phenomena neglected in the usual asymptotic approach to the problem. The choice of the building blocks permitted in the construction of the circuits is based on a thorough enumeration of the local Clifford operations that act as permutations on the basis of Bell states

    Faster-than-Clifford Simulations of Entanglement Purification Circuits and Their Full-stack Optimization

    Full text link
    Quantum Entanglement is a fundamentally important resource in Quantum Information Science; however, generating it in practice is plagued by noise and decoherence, limiting its utility. Entanglement distillation and forward error correction are the tools we employ to combat this noise, but designing the best distillation and error correction circuits that function well, especially on today's imperfect hardware, is still challenging. Here, we develop a simulation algorithm for distillation circuits with gate-simulation complexity of O(1)\mathcal{O}(1) steps, providing for drastically faster modeling compared to O(n)\mathcal{O}(n) Clifford simulators or O(2n)\mathcal{O}(2^n) wavefunction simulators over nn qubits. This new simulator made it possible to not only model but also optimize practically interesting purification circuits. It enabled us to use a simple discrete optimization algorithm to design purification circuits from nn raw Bell pairs to kk purified pairs and study the use of these circuits in the teleportation of logical qubits in second-generation quantum repeaters. The resulting purification circuits are the best-known purification circuits for finite-size noisy hardware and can be fine-tuned for specific hardware error models. Furthermore, we design purification circuits that shape the correlations of errors in the purified pairs such that the performance of the error-correcting code used in teleportation or other higher-level protocols is greatly improved. Our approach of optimizing multiple layers of the networking stack, both the low-level entanglement purification, and the forward error correction on top of it, are shown to be indispensable for the design of high-performance second-generation quantum repeaters
    corecore